
Fuzz Testing

Abhik Roychoudhury

National University of Singapore N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

1

Background / interests ~ 2013-14
“Program testing and program proving
can be considered as extreme
alternatives. ….

This paper describes a practical
approach between these two extremes
…

Each symbolic execution result may be
equivalent to a large number of normal
tests”

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

2
1976 paper on Symbolic Execution

IS
SI

SP
 S

um
m

er
 S

ch
oo

l 2
01

8

3

SEARCH(A, L, U, X, found, j){

int j, found = 0;
while (L <= U && found == 0){
 j = (L+U)/2;
 if (X == A[j]){ found = 1;}
 else if (X < A[j]){ U = j -1; }
 else{ L = j +1; }
}
if (found == 0){ j = L – 1;}

}

SEARCH(A, 1, 5, X, found, j)

X == A[3] found == 1 j == 3
X == A[1] && X < A[3] found == 1 j == 1
X < A[1] && X <A[3] found == 0 j == 0
X = A[2] && X > A[1] && X <A[3] found == 1 j == 2
….

Systematic Testing ?

Comprehension??
Verification ???

Symbolic Execution

USABILITY rather
than SCALABILITY

Fuzz testing
Fuzz testing is a simple technique for feeding random input to applications to
expose bugs and vulnerabilities. The approach has three characteristics.

• The input is random. We do not use any model of program behavior,
application type, or system description. This is sometimes called black box
testing.

• The reliability criteria is simple: if the application crashes or hangs, it is
considered to fail the test, otherwise it passes. Note that the application does
not have to respond in a sensible manner to the input, and it can even quietly
exit.

• As a result of the first two characteristics, fuzz testing can be automated to
a high degree and results can be compared across applications, operating
systems, and vendors.

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

4

TRUE STORY…
Part of the story starts with teaching in 2015.
NUS decided to start a Bachelors in Information
Security.

Fuzzing was an established tech., but I had little
exposure.

Lot of work in 2014-15 on using fuzzing to find
vulnerabilities.

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

5

TRUE STORY…
• May 4, 2015

� Abhik was preparing lecture notes on fuzzing for the to-be-newly-offered CS4239 Software
Security course at National University of Singapore (taught Aug –Dec 2015).

� 11:00 AM – finished deciding on structure and trying to decide on a motivating example for
fuzzing to interest the students, there are so many of them!

� 11:11 AM – I get email update about a latest incident – an integer overflow in Boeing – a classic
case where an automated method for sending out mal-formed or boundary inputs can reveal
errors.

Little or no research on developing newer fuzzing technologies at that time.
AFL existed as a tool from Google.

No understanding of why it worked, when it worked
Got keen about getting inside fuzzers to improve the fuzzing algorithm!

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

6

Why fuzz – the
true story
Boeing 787 Dreamliners contain a potentially
catastrophic software bug
Beware of integer overflow-like bug in aircraft's
electrical system, FAA warns.

by Dan Goodin - May 2, 2015 1:55am CST

A software vulnerability in Boeing's new 787 Dreamliner jet has the potential to cause pilots to lose control of the aircraft,
possibly in mid-flight, Federal Aviation Administration officials warned airlines recently.

The bug—which is either a classic integer overflow or one very much resembling it—resides in one of the electrical systems
responsible for generating power, according to memo the FAA issued last week. The vulnerability, which Boeing reported to
the FAA, is triggered when a generator has been running continuously for a little more than eight months. As a result, FAA
officials have adopted a new airworthiness directive (AD) that airlines will be required to follow, at least until the
underlying flaw is fixed.

"This AD was prompted by the determination that a Model 787 airplane that has been powered continuously for 248 days
can lose all alternating current (AC) electrical power due to the generator control units (GCUs) simultaneously going into
failsafe mode," the memo stated. "This condition is caused by a software counter internal to the GCUs that will overflow
after 248 days of continuous power. We are issuing this AD to prevent loss of all AC electrical power, which could result in
loss of control of the airplane."

The memo went on to say that Dreamliners have four main GCUs associated with the engine mounted generators. If all of
them were powered up at the same time, "after 248 days of continuous power, all four GCUs will go into failsafe mode at the
same time, resulting in a loss of all AC electrical power regardless of flight phase." Boeing is in the process of developing a
GCU software upgrade that will remedy the unsafe condition. The new model plane previously experienced a battery
problem that caused a fire while one aircraft was parked on a runway.

The memo doesn't provide additional details about the underlying software bug. Informed speculation suggests it's a signed
32-bit integer overflow that is triggered after 231 centiseconds (i.e. 248.55 days) of continuous operation.

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

7

Judgement call made at the time

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

8

Fuzzer Symbolic
Execution

Did not take this approach
Established Approach

Fuzzer Fuzzer ‘

Symbolic
Execution

Learn existing
software assurance
techniques – what

works, and what does
not work.

Whenever possible
keep the discussion

rigorous and formal,
but only when

possible

Keep a pragmatic
outlook, if the

rigorous approach is
leading to unusable

techniques.

Remember the
developer: produce
techniques which can

be integrated into
developer workflows.

Presented by Thuan Pham

Black-box Fuzzing

9

White-box Fuzzing

10

x > y

a = x a = y

x + y > 10

b = a

return b

Y

Y

N

N

x £ y Ù x+ y £ 10

x £ y Ù x+y >10

x > y
…

Grey-box Fuzzing

11

Mutators

Test suite

Mutated files

Input Queue

EnqueueDequeue N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

Grey-box Fuzzing Algorithm

12

• Input: Seed Inputs S
• 1: T✗ = ∅
• 2: T = S
• 3: if T = ∅ then
• 4: add empty file to T
• 5: end if
• 6: repeat
• 7: t = chooseNext(T)
• 8: p = assignEnergy(t)
• 9: for i from 1 to p do
• 10: t0 = mutate_input(t)
• 11: if t0 crashes then
• 12: add t0 to T✗

• 13: else if isInteresting(t0) then
• 14: add t0 to T
• 15: end if
• 16: end for
• 17: until timeout reached or abort-signal
• Output: Crashing Inputs T✗

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

Programming
by
experienced
people

Schematic

if (condition1)
 return // short path, frequented by many inputs

else if (condition2)
 exit // short paths, frequented by many inputs

else ….

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

13

Prioritize low probability paths

14

ü Use grey-box fuzzer which keeps track of path id for a test.
ü Find probabilities that fuzzing a test t which exercises π leads to an

input which exercises π’

ü Higher weightage to low probability paths discovered, to gravitate
to those -> discover new paths with minimal effort.

π π'

1 void crashme (char* s) {
2 if (s[0] == ’b’)
3 if (s[1] == ’a’)
4 if (s[2] == ’d’)
5 if (s[3] == ’!’)
6 abort ();
7 }

p

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

Power-Schedules

15

´

´Constant:
´AFL uses this schedule (fuzzing ~1 minute)
´ a(i) .. how AFL judges fuzzing time for the test exercising path i

´Cut-off Exponential:

p(i) = a(i)

p(i) = 0, if f(i) > µ
 min((a(i)/β)*2s(i), M) otherwise
β is a constant
s(i) #times the input exercising path i has been chosen from queue
f(i) # generated inputs exercising path i (path-frequency)
µ mean #fuzz exercising a discovered path (avg. path-frequency)
M maximum energy expendable on a state

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

Showing the idea

16

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

GNU
Binutils, nm

Independent Evaluation and Deployment
• An independent evaluation by team Codejitsu found that AFLFast exposes errors in the benchmark

binaries of the DARPA Cyber Grand Challenge 19x faster than AFL.
• Picked up by AFL user group, with following observations, paraphrased

� AFLFAST assigns substantially less energy in the beginning of the fuzzing campaign.

� Most of the cycles that AFLFAST carries out, are in fact very short. This causes the queue to be cycled very
rapidly, which in turn causes new retained inputs to be fuzzed almost immediately. In other words, because
AFLFAST assigns less energy, it can process the complete queue substantially faster. We say it starts by
exploration rather than by exploitation

• Implemented inside AFL and distributed within one year of publication (CCS’16 paper).

17

There remain differences between
the two in terms of path
discovered. More experiments
may be needed.

In this talk …

• Greybox Fuzzing is frequently used, daily in corporations
� State-of-the-art in automated vulnerability detection

� Extremely efficient coverage-based input generation
� All program analysis before/at instrumentation

time.
� Start with a seed corpus, choose a seed file, fuzz it.
� Add to corpus only if new input increases

coverage.

� Cannot be directed, unlike symbolic execution!

• Enhance the effectiveness of search
techniques, with symbolic execution &
model checking as inspiration

� Enhance coverage, how to make it
directed?

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

18

(Earlier) View-point

19

´ Directed Fuzzing: classical constraint satisfaction prob.

´ Program analysis to identify program paths
that reach given program locations.

´ Symbolic Execution to derive path conditions
for any of the identified paths.

´ Constraint Solving to find an input that
´ satisfies the path condition and thus
´ reaches a program location that was given.

φ1 = (x>y)∧(x+y>10)
φ2 = ¬(x>y)∧(x+y>10)

x > y

a = x a = y

x+y>10

b = a

return b

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

Using symbolic execution

20

Program binary

Benign input files

(Crash instruction, loaded modules,
call stack, register values) Crash input files

Hercules
Toolset

1. Directed Search Algorithm
2. Guided Selective Symbolic Execution

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

Symbolic Analyzer

21
Reproduced vulnerabilities in Acrobat Reader, Media Player with 24 hour time
bound [ICSE15 work, took close to 2 years of effort]

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

Hercules!

22
CS5219 Software Validation by Abhik@NUS

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

(Later) View-point

23

´ Directed Fuzzing as optimization problem!
1. Instrumentation Time:

• Instrument program to aggregate distance values.

2. Runtime, for each input
• decide how long to be fuzzed based on distance.

• If input is closer to the targets, it is fuzzed for longer.

• If input is further away from the targets, it is fuzzed for shorter.

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

Instrumentation

24

´ Function-level target distance using call graph (CG)
´ BB-level target distance using control-flow graph (CFG)

1. Identify target BBs and
assign distance 0

2. Identify BBs that
call functions and
assign 10*FLTD

3. For each BB, compute harmonic
mean of (length of shortest path to
any function-calling BB + 10*FLTD).

CFG for function b

8.7

11

10

30

13

12

N/A

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

Directed fuzzing as optimization

25

´ Integrating Simulated Annealing as power schedule
´ In the beginning (t = 0min),

assign the same energy
to all seeds.

´ Later (t=10min), assign
a bit more energy to
seeds that are closer.

´ At exploitation (t=80min),
assign maximal energy to
seeds that are closest.

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

Outcomes
•Directed greybox fuzzer (AFLGo) outperforms

symbolic execution-based directed fuzzers (KATCH &
BugRedux)
•in terms of reaching more target locations and
•in terms of detecting more vulnerabilities,
•on their own, original benchmark sets.

•Integrated as OSS-Fuzz fork (AFLGo for Continuous
Fuzzing)

•Tool AFLGo publicly available, follow-up works, survey by
community. [CCS17 work, less engineering effort]

84 139 59
AFLGo KLEE

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

26

Handling Structured Data?
Make Greybox Fuzzing input-structure aware by

1. Changing input representation (structured files)
� Use tree-like representation instead of bit string

2. Adding new mutation operators
� working at chunk level (e.g., chunk deletion, insertion and

splicing)

3. Prioritizing more valid seed inputs
� More valid seeds are assigned higher fuzzing “energy”

4. Applying optimizations to retain fuzzing
efficiency

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

27

Mutators

Test suite

Mutated files

Input Queue

EnqueueDequeue

NUS Internal Talk, July 2023 28

AFLSmart
File Cracker

root

chunk 1

… …

chunk 2

Seed input

validity score (0->100)
100: the whole seed is
fully cracked/parsed

XML-based input model.
One input model for each file format.

(e.g., Peach pits)

Comparisons in FuzzBench N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

29

Community
Efforts

Shonan Meeting 2019
(Boehme, Cadar,
Roychoudhury)

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

30

Fuzzbench
 (follow-up of
discussions in Shonan)

(more) POINTERS

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

31ACKNOWLEDGEMENT: National Cyber Security Research program from NRF Singapore

Fuzzing: Challenges and Reflections
IEEE Software, 38(3), pages 79-86, 2021,
Outcome from a 2019 Shonan Meeting.

Linear-time Temporal Logic guided
Greybox Fuzzing,
Ruijie Meng et al, ICSE 2022 (Now).

The Fuzzing Book
Andreas Zeller et al

Coverage-based Greybox Fuzzing as Markov Chain,
CCS16
Directed Greybox Fuzzing, CCS17.
Smart Greybox Fuzzing, TSE21.

Quote on …

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

32

“He continues to teach because it provides him with a
livelihood; also because it teaches him …

…

The irony does not escape him: that the one who
comes to teach learns the keenest of lessons,

while those who come to learn learn nothing.”

J. M. Coetzee

Using fuzzing for complex oracles?
Search
• Enhance the effectiveness of search

techniques, with symbolic execution
as inspiration
� Enhance coverage
� Achieve directed search
� More advanced properties than

crashes! Get close to the effect of
verification as in model checking

33

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

M |= ⏀

Model Checking
via Dir. Fuzzing

Testing reactive
systems

Bug finding search in model checking via
directed fuzzing

Cover the whole specification language
of properties for a well-known and

popular temporal logic – LTL

No state explosion problem as in model
checking.

Fuzzing for more advanced oracles
than simply crashes and hangs!

Most uses of Software Model Checking
are for bug finding

Restricted set of
properties for software

model checking

Mostly restricted to
proving / disproving of

invariants due to nature
of state abstractions

Unnecessary state savings
and state explosion

problem.

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

34

Software Model Checking

Consider ¬j. None of the
exec. traces of M should

satisfy ¬j.
Construct a finite-state
automata A ¬j such that

Language(A ¬j)
= Traces

satisfying ¬j

Construct the synch product
M ´ A ¬j

Check whether any exec
trace s of M is an exec trace
of the product M ´ A ¬j i.e.

check Language(M ´ A ¬j) =
empty-set?

Yes: Violation of
j found, report
counterexample

s

No: Property j
holds for all exec

traces of M.

Used in SPIN Model checker

35

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

Linear-time Temporal Logic

36

• M,p |= Xj iff M,p1 |= j
• Path starting from next state satisfies j

…..

Satisfies j

Satisfies Xj

• M,p |= Fj iff $k ³ 0 M,pk |= j
• Path starting from an eventually reached state satisfies j

…..

Satisfies j

Satisfies Fj

…..

• M,p |= Gj iff "k ³ 0 M,pk |= j
• Path always satisfies j (all suffixes

of the path satisfy j)

…..

Satisfies Gj

Satisfies j

…..

….. …..

…..

Satisfies j1

Satisfies j1

Satisfies j1

Satisfies j1 U j2

Satisfies j2

Satisfies j1 R j2

Satisfies j2

Satisfies j2

Satisfies j2

…..

…..

Satisfies j1 R j2

…..

…..

Satisfies j2

Satisfies j2

Satisfies j2

Satisfies j1 Ùj2

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

Product Automata

(i) System Model
M

(iii) Product Automata M ´ A

ps1 s2

¬p
¬p

true
q1 q2

(s1,q1) (s1,q2)

(s2,q1) (s2,q2)

true
¬p

¬p

true

true
¬p

(ii) Property Automata A

M |= GF p

37

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

Simple (sample) properties N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

38

NO PID Property Description LTL Notation
1 𝑃𝑟 𝐹5 If receiving invalid username or invalid password, the

server must
always show the same message to the user.

G(((request = InvalidUsername) ∨ (request =
InvalidPassword)) "
X(G(sameResponse)))

2 𝑃𝑟 𝐹6 If receiving the CWD request without login, the
server must not give
the CommandOkay response.

G((¬(state = LogIN) ∧ (request = CWD)) "
X(G(¬(response = Com-
mandOkay))))

3 𝑃𝑟 𝐹7 After a connection is constructed successfully, there
should be a
successful login and after that without failed login.

G(((request = ValidUserName&ValidPasswd) "
X(response = Login-
Success)) " X(G(¬(response = LoginFailed))))

4 𝑃𝑟 𝐹8 After the connection is lost after a long time,
responses should be
always timeout.

G(LostConnection " X(G(response = Timeout)))

5 𝐿𝑉6 If the server is in the Play state and receives a Pause
request, should
go into the Ready state.

G(((state = Play) ∧ (request = Pause)) " X(state =
Ready))

Temporal Logic guided Fuzzing

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

39

Find
• Find acceptance states reachable

from initial states (DFS).

• Conduct fuzzing to reach an
accepting state s from initial
state

1
Find
• Find all such acceptance states

which are reachable from itself
(DFS).

• Conduct fuzzing to reach state s
back from state s

2
Counter-example
• Counter-example evidence (if any)

obtained by simply concatenating
the two DFS stacks.

• Construct violating input from
the two fuzzing runs

3

Büchi Automata Guided Fuzzing

Save Progress

Prefix Selection

Target Selection

Trace Evaluation

Progress Saving

40

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

Finding Zero-day Bugs
41NUS Internal Talk, July 2023

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

Looking forward

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

42

Protocol
Implementation

Lot of past works on fuzzing have focused on parsers or file format processors.

Stateful system fuzzing could be the next step – internet facing protocols.

Model Checking efficacy, without guarantees, and without state caching.

Protocol
SpecFuzzer

Advanced
Oracle

BugsValidate

True Bugs

Research Motivation

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

43

1. What is most effective : find more bugs (Utilitarian)

2. The fuzzing search is less sophisticated – how to make it more efficient - or
more effective ? May be combine fuzzing and symbolic execution via tools being
integrated synergistically (Technical)

3. How can you achieve a fuzzing search which will look and feel like fuzzing but
in effect achieves symbolic execution ?

 What is the smallest change in the fuzzing algorithm which will achieve this?

 [Imaginative]

Judgement call to enable translation

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

44

Fuzzer Symbolic
Execution

Did not take this approach

Established Approach

Fuzzer Fuzzer ‘

Symbolic
Execution

Developed this approach

Helped achieve translation despite limited
outreach ability at that time.

Usability Concerns

Is research translated?…
Most research today is only getting used by other research groups …

Hence the extra focus on citations in today’s research.

Genuine concern about innovation in research not making its way to
deployment!

At the same time, genuine concerns about focus on translation-oriented
work affecting research quality.

 N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

45
This Photo by Unknown Author is licensed under CC BY-SA

Translation is typically not of your tool.
Companies have concerns and will re-implement.

http://ofthedunes.deviantart.com/art/Ivory-Tower-105123636
https://creativecommons.org/licenses/by-sa/3.0/

Translation:
a fresh look

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

Concerns about
quality?

Quality and
impact !

Ack: National Research Foundation FRC report ---
Foundational Research Capability study 2021,
Foundations of Security and Data Privacy.

46

Students N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

47

Max Planck Institute University of Melbourne

Marcel Boehme Van-Thuan Pham

Collaboration
with Students

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

48

Each person can bring in their
own perspective.

As a result, it can take place as a
real collaboration among us.

This is what everyone would like
to achieve, BUT

 - there was a very significant
learning period before this.

What is most effective : find more bugs [Utilitarian]

The fuzzing search is less sophisticated – how to make it more
efficient - or more effective ? [Technical]

How can you achieve a fuzzing search which will look and feel like
fuzzing but in effect achieves symbolic execution ? What is the
smallest change in the fuzzing algorithm which will achieve this?
[Imaginative]

Fostering such
collaborations

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

49

Diversity of research
team
• Not only explicit diversity e.g.

geographical
• Also implicit diversity e.g.

training and thought

By a corollary, beyond
mastery of one
technology
• The fuzzing works would not

have been possible otherwise.

Qualitative outlook
instead of excessive

focus on results

- Convince each other
on how much a

proposed idea is new …

Student
Qualities?

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

50

Papers < Placement < Discussions

Output < Outcome < Experience

< <

Part of bigger agenda …
Fuzzing

• Enhance the effectiveness of search
techniques, with symbolic execution as
inspiration
� Enhance coverage
� Achieve directed search
� Find temporal logic violations

without MC overheads

Symbolic Execution

• Explore capabilities of symbolic execution
beyond testing which has been studied
since 1976 (see below)

• Specification inference: Program
repair

51

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

Research Program Announcement

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

52

New research program on fuzzing stateful systems at NUS
(July 23 – 2027)

PI: Abhik Roychoudhury
Co-PI: Zhenkai Liang, Umang Mathur, Manuel Rigger.

53

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

Applications welcome
https://nus-tss.github.io/fuzzing

• Post-doc

• PhD Student

• Research Assistant

N
U

S
In

te
rn

al
 T

al
k,

 J
ul

y
20

23

54

https://nus-tss.github.io/fuzzing

Singapore Fuzzing
Summer School 24

• Annually to be held during the 4-year program.

• First installment May 2024.

• The inaugural Singapore Fuzzing Summer School will debut on the week of
27 – 31 May 2024 at the National University of Singapore in Singapore. The
school will focus on recent advances in fuzzing technology and the practical
application of fuzz testing tools. The school invites both postgraduate
students and researchers with a relevant interest in software testing. The
school also invites industry professionals who wish to gain practical hands-
on knowledge on fuzz testing tools and technologies N

U
S

In
te

rn
al

 T
al

k,
 J

ul
y

20
23

55

https://nus.edu.sg/
https://www.visitsingapore.com/en/

