Fuzz Testing

Abivik Roychowdiury

NUS Internal Talk, July 2023

Naotional Unuersity of Singapore

p—d

Background / interests ~ 2013-14

(14 *

Program testing and program proving
can be considered as extreme
alternatives.

This paper describes a practical
approach between these two extremes

Each symbolic execution result may be
equivalent to a large number of normal
tests”

S —
O s, s huusimisents . - SqUirCTEDES fOT AD
puters to today's challenging problems. S
niques are used in practice; others are the foc
rent The work d in this paper is

T i
| mmechkwme |
. mMThoma;Jf:Wutsoanthenm

" "This paper describes the symboli tion of pro-
grams. Instead of supplying the normal inputs to a
program (¢.g. numbers) one supplies symbols represent-
ing arbitrary values. The execution proceeds as ina
normal execution except that values may be symbolic
formulas over the input symbols. The difficult, yet in-r
" ol o

at assuring that a program meets its requirements even
when formal specifications are not given. The current
technology in this area is basically a testing technology.
That i, some small sample of the data that a program is
expected to handle is presented to the program. If the
program is judged to produce correct results for the
sample, it is assumed to be correct. Much current work.
[11] focuses on the question of how to choose this
sample.

Recent work on proving the correctaess of programs
by formal analysis |5] shows great promise and appears
to be the ulti hnigue for producing reliable pro-
grams. However, the practical accomplishments in this
area fall short of a tool for routine use. Fundamental
problems in reducing the theory to practice are not
likely to be solved in the immediate future.

Program testing and program proving can be con-
sidered as extreme alternatives. While testing, a pro-
grammer can be assured that sample test runs work cor-
rectly by carefully checking the results. The correct exe-
cution for inputs not in the sample is still in doubt. Al

teresting issues arise during the sy 1 :

ditional branch type ts. A particular system
called EFFIGY which provides symbolic execution for
program testing and gging is also ibed. It
interpretively executes programs written in a simple
PL/I style programming language. It includes many
standard debugging features, the ability to manage and
to prove things about symbolic expressions, a simple

testing and a program verifier, A

brief ion of the hip b ymbol
execution and program proving is also included.

Key Words and Phrases: symbolic execution, pro-

gram testing, program debugging, program proving,
program verification, symbolic }nutmuglbn |
CR Cﬂmagrm: 4.13»‘ 5.21,“5.2#“ \‘ ‘ i

e “‘ il i

“‘?w‘f

|01 war mfinermal test cases. These resu

ternatively, in program proving the p form-
ally proves that the program meets its specification for
all exccutions without being required to executc the
program at all. To do this he gives a precise specifica-
tion of the correct program behavior and then follows a
formal proof procedure to show that the program and
the specification are consistent. The confidence in this
method hinges on the care and accuracy employed in
both the creation of the specification and in the con-
struction of the proof steps, as well as on the attention
to machine-dependent issues such as overflow, rounding
etc.
This paper describes a practical approach between
these two extremes. From one simple view, it is an en-
hanced testing technique. Instead of ingap

\ ona set of sample inputs, a program is “symbolically”
executed for a set of classes of inputs. That is, each sym-

| bolic execution result may be equivalent to a large i

1976 paper on Symbolic Execution

(am)]
N
(@)
(a]
>
2
=
S
)
—
<
=
r—
<
&
B~
Q
+~
o
-
é

BE &

95
NUS

National University
of Singapore

Symbolic Execution

a "\ SEARCH(A, 1, 5, X, found, j)
SEARCH(A, L, U, X, found, 7J){
int j, found = 0;
e T e T Y X == A[3] fond ==1 j==3
if (X == A[§]){ found = 1; X==A[1] && X < A[3] found==1 j==1
e UYL X< AL && X <A found ==0 j==0

} X = A[2] && X > A[1] && X <A[3] found==1 j==2

if (found == 0){ j = L - 1;}

L /

USABILITY rather

Systematic Testing ?
Comprehension??

Verification ???

0
—
=
A
r—
o
Qo
<
Q
AN
~
(D)
g
g
=
N
ol
AN
[kl
D]
AN
e

than SCALABILITY

Fuzz testing

Fuzz testing is a simple technique for feeding random input to applications to
expose bugs and vulnerabilities. The approach has three characteristics.

The input is random. We do not use any model of program behauvior,
application type, or system description. This is sometimes called black box

testing.

The reliability criteria is simple: if the application crashes or hangs, it is
considered to fail the test, otherwise it passes. Note that the application does
not have to respond in a sensible manner to the input, and it can even quietly

exit.

As a result of the first two characteristics, fuzz testing can be automated to
a high degree and results can be compared across applications, operating
systems, and vendors.

(e}
N
S
N
>
—
=)
=
,Mh
—
o]
B
—
o]
=i
~
Q
=)
[=f
—
é

B &

95
NUS

National University
of Singapore

TRUE STORY...

Part of the story starts with teaching in 2015.

NUS decided to start a Bachelors in Information
Security.

Fuzzing was an established tech., but I had little
=, exposure.

Lot of work in 2014-15 on using fuzzing to find
- vulnerabilities.

(ap)
N
S
N
=
L)
—

o]
&
—

<

g

~

Q
e}

=
—
0
)
Z

NUS

National University
of Singapore

TRUE STORY...

May 4, 2015

Abhik was preparing lecture notes on fuzzing for the to-be-newly-offered CS4239 Software
Security course at National University of Singapore (taught Aug —Dec 2015).

11:00 AM — finished deciding on structure and trying to decide on a motivating example for
fuzzing to interest the students, there are so many of them!

11:11 AM — I get email update about a latest incident — an integer overflow in Boeing — a classic
case where an automated method for sending out mal-formed or boundary inputs can reveal
errors.

Little or no research on developing newer fuzzing technologies at that time.
AFL existed as a tool from Google.

No understanding of why it worked, when it worked
Got keen about getting inside fuzzers to improve the fuzzing algorithm!

NUS Internal Talk, July 2023

Why fuzz — the
true story

Boeing 787 Dreamliners contain a potentially
catastrophic software bug

Beware of integer overflow-like bug in aircraft's
electrical system, FAA warns.

by Dan Goodin - May 2, 2015 1:55am CST

A software vulnerability in Boeing's new 787 Dreamliner jet has the potential to cause pilots to lose control of the aircraft,
possibly in mid-flight, Federal Aviation Administration officials warned airlines recently.

The bug—which is either a classic integer overflow or one very much resembling it—resides in one of the electrical systems
responsible for generating power, according to memo the FAA issued last weekAgThe vulnerability, which Boeing reported to
the FAA, is triggered when a generator has been running continuously for a little more than eight months. As a result, FAA
officials have adopted a new airworthiness directive (AD) that airlines will be required to follow, at least until the
underlying flaw is fixed.

"This AD was prompted by the determination that a Model 787 airplane that has been powered continuously for 248 days
can lose all alternating current (AC) electrical power due to the generator control units (GCUs) simultaneously going into
failsafe mode," the memo stated. "This condition is caused by a software counter internal to the GCUs that will overflow
after 248 days of continuous power. We are issuing this AD to prevent loss of all AC electrical power, which could result in
loss of control of the airplane."

The memo went on to say that Dreamliners have four main GCUs associated with the engine mounted generators. If all of
them were powered up at the same time, "after 248 days of continuous power, all four GCUs will go into failsafe mode at the
same time, resulting in a loss of all AC electrical power regardless of flight phase." Boeing 1s in the process of developing a
GCU software upgrade that will remedy the unsafe condition. The new model plane previously experienced a battery
problem that caused a fire while one aircraft was parked on a runway.

The memo doesn't provide additional details about the underlying software bug. Informed speculation suggests it's a signed
32-bit integer overflow that is triggered after 231 centiseconds (i.e. 248.55 days) of continuous operation.

BE &

v o7
NUS

National University
of Singapore

@9
N
S
N
>
—_—
=)
=
,M'\
—
o]
IS
—
o]
=)
~
Q
he)
<
[
é

B &

95
NUS

National University
of Singapore

Judgement call made at the time

Fuzzer - Symbolic

Execution

Did not take this approach

Established Approach .
Symbolic

Execution

Keep a pragmatic Remember the

Whenever possible
outlook, if the developer: produce

keep the discussion

Learn existing
software assurance

rigorous approach is techniques which can
leading to unusable be integrated into
techniques. developer workflows.

(2]
N
S
N
£
o
—

o]
3
r—

o]

s

~

Q
+~

=
—
AN
-
Z

rigorous and formal,
but only when
possible

techniques - what
works, and what does
not work.

B &

Black-box Fuzzing NUS

National University
of Singapore

Mutated Inputs

Seed Input

Peach, Spike ... % all checks

Model-Based
Blackbox
Fuzzing

N\
~
WV

igfy some checks

l

Input model
—Sutigfy some checks

- Inputs
* Program P
+ Seed input x0
* Mutation ratio 0 <m <1

- Next step
* Obtain an input x1 by randomly flipping m* |x0| bits
* Run x1 and check if P crashes or terminates properly.
* In either case document the outcome, and generate next input.

- End of fuzz campaign
* When time bound is reached, or N inputs are explored for some N.
- Always make sure that bit flipping does not run same input twice.

White-box Fuzzing

Seed Input

A

Dynamic

smmnd Symbolic

x<yarxt+ty<10 ' / B e

x<yAnx+ty>10

x>y

(optional) crash locations

Grey-box Fuzzing

Mutated files

g4 Mutators

Hi=]

Test suite

Input Queue

Dequeue ‘._‘!\ ‘:\ ‘ Enqueue

(g}
N
S
N
=
5
=
o]
>
r—
o]
g
~
Q
-
=
=
é

e &

95
NUS

National University
of Singapore

Grey-box Fuzzing Algorithm

* Input: Seed Inputs S

e 1:Tx=09

e 2:T=S

 3:1f T =0 then

. 4: add empty file to T

* 5:end if

* 6:repeat

e T t = chooseNext(T) Invalid

. 8 p = assignEnergy(t) =

= for i from 1 to p do s::ar:ct::qsae}sr;zr;;non Short paths rejecting syntactically

* 10: t0 = mutate_input(t) invalid PDF ;g\éaflrlgc;zggti are exercised by fuzzer §
e 11: if t0 crashes then S
o 12: add t0 to Ty :;
« 13: else if isInteresting(tO) then =
. 14: addtOto T %
« 15: end if %
+ 16: end for E
* 17: until timeout reached or abort-signal é

* Output: Crashing Inputs Ty

Pro ora mmin o Schematic

by

experienced if (conditionl)
pe()ple return // short path, frequented by many inputs
else if (condition2)
ex1t [/ short paths, frequented by many inputs
else

@9
N
&
N
>
—_—
=)
=
,M"
—
o]
IS
—
o]
=)
~
Q
+~
<
=
é

Prioritize low probability paths

v" Use grey-box fuzzer which keeps track of path id for a test.

v Find probabilities that fuzzing a test t which exercises o leads to an
Input which exercises o’

o —&

v" Higher weightage to low probability paths discovered, to gravitate
to those -> discover new paths with minimal effort.

4)

vold crashme (char* s) {
if (s[0] =="D’)
if (s[1] =="a’)
if (s[2] =="d)
if (s[3] =="7)
abort ();

1
2
3
4
5
6
7
. /

@9
N
&
N
>
—_—
=)
=
,M"
—
o]
IS
—
o]
g
~
Q
+~
=
=
é)

Power-Schedules

=» Constant: p@) = a@)
» AFL uses this schedule (fuzzing ~1 minute)
® 0(1) .. how AFL judges fuzzing time for the test exercising path 1

» Cut-off Exponential:

pM = 0, if fO)>p |
min((a(1)/B)*250, M) otherwise

B is a constant

s(1) #times the input exercising path 1 has been chosen from queue
f(1) # generated inputs exercising path 1 (path-frequency)

1w mean #fuzz exercising a discovered path (avg. path-frequency)
M maximum energy expendable on a state

/« = (Z 5‘ (‘i \)/l S\ where S is the set of
v €S discovered paths

(am]
(o]
(@)
(A
>
>
=)
=
)
=
<
=
r—
<
=
<
Q
-
c
o
é

e &

95
NUS

National University

Showing the 1dea

» 10°-
4 AFL-FAST
S 10*-
@)
D 3
e 100 mean =_382
S 102-
3
1.
£ 10
-
Z 10°- -a——
0 50 100 150 200 250 300 350 400 450 500
Path Index -
N
S
2 AFL =
& S
O =]
B, o S N [) Y A mean = 1288 &
= :
— Q
5 =
2 0
£ GNU Z
< 10°- —— Binutils, nm

0 50 100 150 200 250 300 350 400 450 500
Path Index

Independent Evaluation and Deployment

- An independent evaluation by team Codejitsu found that AFLFast exposes errors in the benchmar
binaries of the DARPA Cyber Grand Challenge 19x faster than AFL.

- Picked up by AFL user group, with following observations, paraphrased

- AFLFAST assigns substantially less energy in the beginning of the fuzzing campaign.

« Most of the cycles that AFLFAST carries out, are in fact very short. This causes the queue to be cycled very
rapidly, which in turn causes new retained inputs to be fuzzed almost immediately. In other words, because

AFLFAST assigns less energy, it can process the complete queue substantially faster. We say it starts by
exploration rather than by exploitation

- Implemented inside AFL and distributed within one year of publication (CCS’16 paper).

/

There remain differences between
the two 1n terms of path
discovered. More experiments
_ may be needed.

M &

95
NUS

National University
of Singapore

In this talk ...

Greybox Fuzzing is frequently used, daily in corporations R Enhance the effectiveness Of Search
State-of-the-art in automated vulnerability detection
techniques, with symbolic execution &
Extremely efficient coverage-based input generation mOdel CheCleg as 1DSp1Tat10n
+ All program analysis before/at instrumentation
time.

Start with a seed corpus, choose a seed file, fuzz it. .
. . . - Enhance coverage, how to make it
- Add to corpus only if new input increases

coverage. directed?

Cannot be directed, unlike symbolic execution!

@9
N
&
N
>
—_—
=)
=
,M"
—
o]
IS
—
o]
=)
~
Q
+~
=
=
é

(Earlier) View-point

= Directed Fuzzing: classical constraint satisfaction prob.

= Program analysis to identify program paths
that reach given program locations.

= Symbolic Execution to derive path conditions
for any of the identified paths.

®» Constraint Solving to find an input that

-» satisfies the path condition and thus

-» reaches a program location that was given.

(2]
N
S
N
=
b
=
o]
&
r—
o]
&
B~
Q
-
=
=
é

p1 = (x>V)A(x+ty>10)
QP2 = = (x>y)A(x+ty>10)

Using symbolic execution

Reproduced vulnerabilities in Acrobat Reader, Media Player with 24 hour time bound

Program binary

REPORT

(Crash instruction, loaded modules,
Crash input files

/ 1. Directed Search Algorithm
2. Gruided Selective Sjmboim Execution

call stack, register values)

(ap)
N
S
N
=
=
i)
—
o]
IS
—
o]
g
~
Q
he)
=
=
é

Benign input files

e &

95
NUS

National University
of Singapore

Symbolic Analyzer

o CFG and MDG Crash explanaion
Binaries CFG and MDG (pruned)

it Static and Concolic

v edi,esd dynamic exploration Targeted

ol [etprarg_0] analyses and concolic

mov edlz[ebp'rarg:ﬂ y D D . . .

t precise faint exploration
’——b IDAPro ﬁ r——f tracking —l

Hybrid symbolic file Crash-revealing input

CE

Reproduced vulnerabilities in Acrobat Reader, Media Player with 24 hour time
bound [ICSE15 work, took close to 2 years of effort]

Selected
input files

7))

= 0

=
F||e structure
info

Test Suite A @

Crash
Report

7
g/
7
i

77
7
éé I

(2]
N
&
N
>
=
=)
}1
..M"
=
o]
IS
—
o]
g
~
Q
+~
=
=
é

ercules!

v

Program binary

(Crash address, loaded modules,
call stack, register values)

Benigninput files

Hercules

—

toolset

Crashinput files

Y

Test input
selection

&
Control N Dbenign
Input file

Flow Graph
(CFG)

generation

R

Precise
Taint
Tracking

—

—

IR Hybrid
Input file

Targeted
concolic

exploration

—

start
Replay |
———

Al "

O

Crashing module

4 Replay phase
—-—
Summarization
penssmmneenens 1

Target. search

—

Alt. location

©

Case studies

Selected

modules | and

S2E (DFS |Peach

CVE-2010-2204 (Adobe Reader)
Memory Access Violation

CVE-2010-3000 (Real Player)
Integer Overflow

Random)

2/78

2/129

CVE-2014-2671 (Windows Media Player) 4 [/ 84

Division by Zero

CVE-2010-0718 (Windows Media P
Buffer overflow

CVE-2010-0688 (Orbital Viewer)

Buffer overflow

CVE-2011-0502 (MAM player)
Null pointer reference

layer) 3/86
2/ 49

1/51

R

X X X X

R

R X X

™

™

e &

95
NUS

National University
of Singapore

@9
N
&
N
>
—_—
=)
=
,M"
—
o]
IS
—
o]
g
~
Q
+~
=
=
é)

(Later) View-point

®» Directed Fuzzing as optimization problem!

1. Instrumentation Time:

. Instrument program to aggregate distance values.
2. Runtime, for each input

. decide how long to be fuzzed based on distance.

« If input is closer to the targets, it is fuzzed for longer.

« Ifinput is further away from the targets, it is fuzzed for shorter.

@9
N
&
N
>
—_—
=)
=
,M"
—
o]
IS
—
o]
g
~
Q
+~
=
=
é)

Instrumentation

= Function-level target distance using call graph (CG)
=» BB-level target distance using control-flow graph (CFG)

1. Identify target BBs and
assign distance 0

2. Identify BBs that

call functions and
assign 10*FLTD

3. For each BB, compute harmonic
mean of (length of shortest path to ‘
any function-calling BB + 10*FLTD). \

o

(ap)
N
S
N
o
3
=
i
=
©
IS
r—
<
<
~
Q
-
o
=
é

CFG for function b

Directed fuzzing as optimization

® Integrating Simulated Annealing as power schedule

® [n the beginning (t = Omin),

assign the same energy 1.007
to all seeds. ~
075 el
2
®» Later (t=10min), assign Q
. . 0.50-
a bit more energy to &
seeds that are closer. o
- i
T 0.25
» At exploitation (t=80min), 0.00 -

assign maximal energy to '

1 1 1
seeds that are closest. 0.00 0-2‘{) 050 075 1.00
Distance d(s, Ty)

— t=0min === t=10mi@

(am)]
N
(@)
(a]
>
2
=
S
)
—
<
=
r—
<
&
B~
Q
+~
o
-
é

Outcomes

* Directed greybox fuzzer (AFLGo) outperforms
symbolic execution-based directed fuzzers (KATCH &
BugRedux)

° in terms of reaching more target locations and
°in terms of detecting more vulnerabilities, AFLGo KLEE

° on their own, original benchmark sets.

* Integrated as OSS-Fuzz fork (AFLGo for Continuous
Fuzzing)

* Tool AFLGo publicly available, follow-up works, survey by
community. [CCS17 work, less engineering effort]

@9
N
&
N
>
—_—
=)
=
,M"
—
o]
IS
—
o]
=)
~
Q
+~
<
=
é

)

95
NU

National University
of Singapore

Handling Structured Data?

Make Greybox Fuzzing input-structure aware by

1.Changing input representation (structured files)
Mutated files - Use tree-like representation instead of bit string

2.Adding new mutation operators

+ working at chunk level (e.g., chunk deletion, insertion and
Il 7 u_ SphClng)
Test suite Input Queue 3. Prioritizing more valid seed inputs
@ @ + More valid seeds are assigned higher fuzzing “energy”
Dequeue Enqueue

4. Applying optimizations to retain fuzzing
efficiency

@9
N
&
N
>
—_—
=)
=
,M"
—
o]
IS
—
o]
=)
~
Q
+~
<
=
é

Mutated files

Mutators

il

Test suite

Input Queue

Dequeue Enqueue

"= e

AFLSmart - Structure <& Validity (%) €—
Grecor Collector
N Gl
[Conunit_] [enume] 4
]

File
Cracker

AFLSmart | I
Energy Calculator

Input Queue

<DataModel name="Chunk">
<String name="ckID" length="4"/>
<Number name="cksize" size="32" >
<Relation type="size" of="Data"/>
</Number>
<Blob name="Data"/>
<Padding alignment="16"/>
</DataModel>
<DataModel name="ChunkFmt" ref="Chunk">
<String name="ckID" value="fmt "/>
<Block name="Data">
<Number name="wFormatTag" size="16"/>
<Number name="nChannels" size="16"/>
<Number name="nSampleRate" size="32"/>
<Number name="nAvgBytesPerSec" size="32"/>
<Number name="nBlockAlign" size="16" />
<Number name="nBitsPerSample" size="16"/>
</Block>
</DataModel>

<DataModel name="Wav" ref="Chunk">
<String name="ckID" value="RIFF"/>
<String name="WAVE" value="WAVE"/>
<Choice name="Chunks" maxOccurs="30000">
<Block name="FmtChunk" ref="ChunkFmt"/>

<Block name="DataChunk" ref="ChunkData"/>
</Choice>
</DataModel>

& J

AFLSmart

File Cracker

Seed input

XML-based input model.
One input model for each file format.
(e.g., Peach pits)

chunk 2

validity score (0->100)
100: the whole seed is
fully cracked/parsed

)

95
NUS

National University
of Singapore

o) WS

‘ Fuzzer
google/fuzzbench
Researcher
Fuzzers +
Benchmarks
libxmi2-v2.9.2 (24hr, 20 trials/fuzzer) "
Results
- FuzzBench
I - Service
Report

Hot fuzz: Bug detectives whip up smarter version of classic ...
https://www.theregister.co.uk » 2018/11/28 » better_fuzzer_aflsmart v

Nov 28, 2018 - Known as AFLSmart, this fuzzing software is built on the powerful American ...
We're told AFLSmart is pretty good at testing applications for common The Register -
Independent news and views for the tech community.

AFLSmart | Latest AFLSmart News, Articles and Updates
https://cyware.com > tags » aflsmart v

AFLSmart - Check out latest news and articles about AFLSmart on Cyware.com. We provide
machine learning based curation engine brings you the top and ...

Researchers Introduce Smart Greybox Fuzzing | SecurityWeek ...
https://www.securityweek.com > researchers-introduce-smart-greybox-fuzz... v
Nov 29, 2018 - Information Security News, IT Security News and Cybersecurity Insights: ...
According to the experts, AFLsmart is highly efficient in analyzing ...

Comparisons 1in FuzzBench

B &

95
NUS

National University
of Singapore

o
N
S
N
>
—_—
=)
=
,Mh
—
o]
IS
—
o]
=)
~
Q
he)
<
[
é

DN
N©

google/fuzzbench
eeeeeeeeee

Community
Efforts

Fuzzers +
Benchmarks

2

Womi242.9.2 24, 20 trisktuzzer)
! :: Results
H ol < FuzzBench
H Service
Jil

leport

Fuzzbench Shonan Meeting 2019 Fuzzing:

(follow-up of (Boehme, Cadar, Challenges and
discussions in Shonan) Roychoudhury) Reflections

Marcel Bohme, Monash University
Cristian Cadar, Imperial College London

Abhik Roychoudhury, National University of Singapore

We summarize the open challenges and
opportunities for fuzzing and symbolic
execution as they emerged in discussions
among researchers and practitioners

S I I O N A N in a Shonan Meeting and that were
M E E T I N G validated in a subsequent survey.

(ap)
N
S
N
=
i)
—

o]
&
—

o]

g

~

Q
e}

=
—
0
)
Z

(more) POINTERS

Coverage-based Greybox Fuzzing as Markov Chain, Fuz Z1ng.
CCS16 | Challenges and
Directed Greybox Fuzzing, CCS17. R ﬂ 5
Smart Greybox Fuzzing, TSE21. eIlectlions
Marcel Bbhme, Monash University
. . . . Cristian Cadar, Imperial College London
Llne ar-tlme Temporal LO glc gu lde d Abhik Roychoudhury, National University of Singapore
Greybox Fuzzing, .
e We summarize the open challenges and
RUl] 1€ Meng et al R IC S E 2 02 2 (NOW) . opportunities for fuzzing and symbolic
execution as they emerged in discussions
o among researchers and practitioners
The FuZZIHg BOOk in a Shonan Meeting and that were
Andreas Zeller et al validated in a subsequent survey.

Fuzzing: Challenges and Reflections
IEEE Software, 38(3), pages 79-86, 2021,
Outcome from a 2019 Shonan Meeting.

(ap)
N
S
N
=
5
=
o]
>
r—
o]
g
~
Q
-
=
=
é

{ ACKNOWLEDGEMENT: National Cyber Security Research program from NRF Singapore

(am)]
N
(@)
(&]
>
i
=
=
)
—
o]
=
r—
<
]
~
Q
+~
(]
(S
é

Quote on ...

“He continues to teach because it provides him with a
livelihood; also because it teaches him ...

The irony does not escape him: that the one who
comes to teach learns the keenest of lessons,

while those who come to learn learn nothing.”

J. M. Coetzee

Using fuzzing for complex oracles?

Search

- Enhance the effectiveness of search
techniques, with symbolic execution
as inspiration

- Enhance coverage
- Achieve directed search

- More advanced properties than
crashes! Get close to the effect of
verification as in model checking

M|[=0

Model Checking
via Dir. Fuzzing

Testing reactive
systems

(am)]
N
(@)
(a]
>
2
=
S
)
—
<
=
r—
<
&
B~
Q
+~
(]
(S|
é

Most uses of Software Model Checking

are for bug finding

Mostly restricted to
proving / disproving of
invariants due to nature
of state abstractions

Unnecessary state savings
and state explosion
problem.

Restricted set of
properties for software
model checking

Bug finding search in model checking via
directed fuzzing

o No state explosion problem as in model
Cover the whole specification language checking.

of properties for a well-known and

popular temporal logic — LTL Fuzzing for more advanced oracles

than simply crashes and hangs!

BE &

95
NUS

National University
of Singapore

(e}
N
&
(o]
>
—
=
-
=
A
r—
VE'G
=
r—
<
g
&~
Q
=
@]
—

BE &

Software Model Checking NS

National University
of Singapore

- User provided

Predicate store

Extraction

Used in SPIN Model checker

YES,

Proved. '\
NO. ’
Counter-
example

Check whether any exec

Consider —¢. None of the trace o of M is an exec trace

Construct a finite-state Construct the synch product

automata A _, such that

of the product M x A _ i.e.
check LanguageM x A _,) =
empty-set?

exec. traces of M should

satisfy —o. MxA_

4 \
Yes: Violation of

Language(A) ¢ found, report
= Traces counterexample
satisfying —¢ c
_ J
Ve N\

GR)
AN
(@)
(|
>
=
=
i)
—
[av]
=
—
(v}
<
i
Q
+
<!
=
=
p

No: Property ¢
— holds for all exec
traces of M.

Linear-time Temporal Logic

« M,z |= Xo iff Myz! |= ¢ * Mt |=Foiff 3k>0 Mzk|=¢ « M,n |= G iff Yk > 0 M,k |= ¢
« Path starting from next state satisfies ¢ » Path starting from an eventually reached state satisfies ¢ + Path always satisfies ¢ (all suffixes Satisfies ¢

of the path satisfy ¢)
Natisfies @

Satisfies ¢ j\ /]\

) N / \W_.
Ys;,ﬁsﬁes Fo s

.
k\%@

AN
\\/Satisﬁes Xop

A Satisfies @2 /\
Satisfies p1 / \
J\ /\ Satisfies p2

/ Satisfies @2
Satisfies ¢1 / \ j\
/\ Satisfies p2 [Satisfies @2
Satisfies ¢1 / \
..... Satisfies @2
atisfies g1 Ap2
N / Satisfies p2 \ KC : h
: : (> U - 4.0—’ """ \C : : J Y Satisfies p1 R @2
\ / \/ Satisfies p1 R @2
\ﬁaﬁsfies o1 U p2

-

-

)

M &

95
NUS

National University
of Singapore

(am)]
N
(@)
(a]
>
2
=
S
)
—
<
=
r—
<
&
B~
Q
+~
(]
-
é

B ®

Product Automata N

—p
sl @ > s2 ql q2

of Singapore
true

(i) System Model (ii) Property Automata A

M
true @ﬁp
—p
(s1.q1) (s1,92)

s2,q2
(SZ,q1Q>true @(@)
(iii) Product Automata M x A

M |~ GF p

@9
N
&
N
>
—_—
=)
=
,M"
—
o]
IS
—
o]
g
~
Q
+~
=
=
é)

NO |PID Property Description LTL Notation

1 Pr 5 |If receiving invalid username or invalid password, the | G(((request = InvalidUsername) vV (request =
server must InvalidPassword)) -»
always show the same message to the user. X(G(sameResponse)))

2 PrFg |If receiving the CWD request without login, the G((—(state = LogIN) A (request = CWD)) »
server must not give X(G(—=(response = Com-
the CommandOkay response. mandOkay))))

3 Pr £ | After a connection is constructed successfully, there |G(((request = ValidUserName& ValidPasswd) -»
should be a X(response = Login-
successful login and after that without failed login. Success)) » X(G(—(response = LoginFailed))))

4 Pr Fy | After the connection is lost after a long time, G(LostConnection » X(G(response = Timeout)))
responses should be
always timeout.

5 LV If the server is in the Play state and receives a Pause |G(((state = Play) A (request = Pause)) » X(state =

request, should
go into the Ready state.

Ready))

Simple (sample) properties

NUS Internal Talk, July 2023

33

BB &®

/4

o)

NU

National University
of Singapore

Temporal Logic guided Fuzzing

o

. . N
Find Find Counter-example S
B

* Find acceptance states reachable * Find all such acceptance states * Counter-example evidence (if any) =
from initial states (DFS). which are reachable from itself obtained by simply concatenating)
(DFS). the two DFS stacks. &

* Conduct fuzzing to reach an Tg“
accepting state s from initial * Conduct fuzzing to reach state s * Construct violating input from o
state back from state s the two fuzzing runs ;g

Qo
N

Buichi Automata Guided Fuzzing

Input: P’: The transformation of program under test Program
Input: A-4: Automata of negation of property under test Transformation

Input: map: Map between propositions and program locations

Input: flag: True for liveness properties

LTL Propcny F\ent —» Traces
Generalor ‘llnslrumcnled

Trace
Ev aluanon
Pruﬁx Pool
Prefix

Sdu.uon ‘ Output

Input: total_time: Time budget for fuzzing Progam Program
Input: target_time: Time budget for reaching a program location @M/m' |M°""°’| el
1 Procedure Fuzz (P, A-g, map, flag, total_time, target_time) IST::I:: Il
2 so < getInitState(A-yp) ; ' B Automata
Guided Fuzzing

3

4
5

10

11

12

13

14

15

for time < total time do
[(x},x§) « selectPrefix(X) ;

X — {(0,s0)}; // Starting with init state of A-4

Input

Prefix Selection

p < selectTa rgetAtomicProposition(.?lﬂqg,:]cf)/ larget Selection

[l « selectProgramLocationTarget(map, p)

for time’ < target_time do

I' — replacePrefix (I, x%) ;

I « generatelnput(D, Spower) :

// D: Feedback of CFG distance
/! Spower: Power schedule algorithm

[d, (x',x%) « evaluate(P, I,

Trace Evaluation
flag) ;/

D— DU{d};

Progress Saving

(X XU

end

end

Save Progress

B ®

95
NUS

National University
of Singapore

(2]
N
&
N
>
—
=)
}1
..M"
=
o]
IS
—
o]
g
~
Q
+~
=
=
é

Table 4: Zero-day Bugs found by LTL-FuzzeR; for several of them CVEs have been assigned.

Prop I Program

Description of violated properties

l Bug Status

If the server is in the WAIT_CLIENTHELLO state and receives a ClientHello request with valid cookie and

CVE-2021-42143,

i Bl ieras the epoch value 0, must finally give ServerHello responses. fixed
TD, | TinyDTLS0.9 If the server is in WAIT_CLIENTHELLO state and receives a ClientHello request with valid cookie but not | CVE-2021-42142,
0 epoch value, must not give ServerHello responses before receiving ClientHello with 0 epoch value. | fixed
S : If the server is in the WAIT_CLIENTHELLO state and receives a ClientHello request with an invalid cookie, | CVE-2021-42147.
T'Ds; | TinyDTLS0.9 4
must reply HelloVerifyRequest. fixed
If the server is in the DTLS_HT_CERTIFICATE_REQUEST state and receives a Certificate request, must CVE-2021-42145
TDs | TinyDTLS0.9 give a DTLS_ALERT_HANDSHAKE_FAILURE or DTLS_ALERT_DECODE_ERROR response, or set Client_Auth to fixed :
be verified.
TDy: | TinyDTLS0.9 After the server rece.ives a Cl-ientHello req.uest without renegotiation :.zxt.ensiox.l and gives a ServerHello T R
response, then receives a ClientHello again, must refuse the renegotiation with an Alert.
After the server receives a ClientHello request and gives a ServerHello response, then receives a CVE-2021-42141
TDi2| TinyDTLS0.9 ClientKeyExchange request with a different epoch value than that of ClientHello, server must not give s ’
ChangeCipherSpec responses.
2 After the server receives a ClientHello request and gives a ServerHello response, then receives a g
Ao | “Eay DR d ClientHello request with the same epoch val?le as that of the first one, server mustpnot give ServerHello. e
. . If the server receives a ClientHello request and gives a HelloVerifyRequest response, and then receives | CVE-2021-42144,
T'D4| TinyDTLS0.9 g 7 7 PR
a over-large packet even with valid cookies, the server must refuse it with an Alert. fixed
CT; | Contiki-Telnet3.0 | After WILL request is received and the corresponding option is disabled, must send DO or DONT responses. | CVE-2021-40523
CT, | Contiki-Telnet3.0 | After DO request is received and the corresponding option is disabled, must send WILL or WONT responses. | Confirmed
CT; | Contiki-Telnet3.0 | After WONT request is received and the corresponding option is disabled. must not give responses. CVE-2021-38311
CTs | Contiki-Telnet3.0 | After DONT request is received and the corresponding option is disabled. must not give responses. Confirmed
CTyo | Contiki-Telnet3.0 | Before Disconnection, must send an Alert to disconnect with clients. CVE-2021-38387
CT;, | Contiki-Telnet3.0 | If conducting COMMAND without AbortOutput, the response must be same as the real execution results. CVE-2021-38386
PuFs| Pure-FTPd1.0.4 When quota mechanism is activated and user quota is exceeded, must finally reply a quota exceed message. CHE A

fixed

Ing Zero-day Bugs

NUS Internal Talk, July 2023

B ®

%
NUS

National University
of Singapore

NUS Internal Talk, July 2023

B &®

95
NUS

National University
of Singapore

Looking forward

Lot of past works on fuzzing have focused on parsers or file format processors.
Stateful system fuzzing could be the next step — internet facing protocols.

Model Checking efficacy, without guarantees, and without state caching.

Protocol
Advanced Implementation
Oracle

Fuzzer Protocol

(ap)
N
S
N
=
i)
—

o]
&
—

<

g

~

Q
e}

=
—
0
)
Z

Validate

True Bugs

BE®

NU

National University
of Singapore

Research Motivation

1. What 1s most effective : find more bugs (Utilitarian)
2. The fuzzing search is less sophisticated — how to make it more efficient - or
more effective ? May be combine fuzzing and symbolic execution via tools being

integrated synergistically (Technical)

3. How can you achieve a fuzzing search which will look and feel like fuzzing but
in effect achieves symbolic execution ¢

What is the smallest change in the fuzzing algorithm which will achieve this?

[Imaginative]

(am)]
N
(@)
(a]
>
2
=
S
)
—
<
=
r—
<
&
B~
Q
+~
(]
(S|
é

Judgement call to enable translation

Fuzzer - Symbolic

Execution

Did not take this approach

Established Approach

Usability Concerns

Symbolic |
Execution

Developed this approach

Helped achieve translation despite limited
outreach ability at that time.

(ap)
N
S
N
=
i)
—
o]
&
—
o]
g
~
Q
he)
=
—
Cé

Is research translated?...

Most research today is only getting used by other research groups ...
Hence the extra focus on citations in today’s research.

Genuine concern about innovation in research not making its way to
deployment!

At the same time, genuine concerns about focus on translation-oriented
work affecting research quality.

NUS Internal Talk, July 2023

Translation is typically not of your tool.
Companies have concerns and will re-implement.

N
Ot

This Photo by Unknown Author is licensed under CC BY-SA

http://ofthedunes.deviantart.com/art/Ivory-Tower-105123636
https://creativecommons.org/licenses/by-sa/3.0/

Ack: National Research Foundation FRC report -
Foundational Research Capability study 2021,
Foundations of Security and Data Privacy.

Concerns about
quality?

Less frequent

Quality and
impact !

Roundtrip Engineering for growing mature R&D ecosystem

NATIONAL RESEARCH FOUNDATION

PRIME MINISTER’S OFFICE
SINGAPORE

Research . Innovation . Enterprise

Translation:

a fresh look

Marcel Boehme

Max Planck Institute

Van-Thuan Pham

University of Melbourne

NUS Internal Talk, July 2023

N
~J

NUS Internal Talk, July 2023

Collaboration
with Students

Each person can bring in their
own perspective.

As a result, it can take place as a
real collaboration among us.

This 1s what everyone would like
to achieve, BUT

- there was a very significant
learning period before this.

L) Ng
Ttilite

What is most effective : find more b¥igs o ian]

O
The fuzzing search is less sophisticated = how to make it more
efficient - or more effective ? [Technical] \f .

How can you achieve a fuzzing search whichs
fuzzing but in etfect achieves symbolic execu on ?
smallest change in the fuzzing algorlthm Shiohs
[Imaginative] A

Fostering such
collaborations

NUS Internal Talk, July 2023

N
N®

Papers < Placement < Discussions

Output < Outcome < Experience

NUS Internal Talk, July 2023

Ot
-

Part of bigger agenda ...

Fuzzing Symbolic Execution

- Enhance the effectiveness of search - Explore capabilities of symbolic execution
techniques, with symbolic execution as beyond testing which has been studied
inspiration since 1976 (see below)

- Enhance coverage cpe e .
- Specification inference: Program

- Achieve directed search repair

- Find temporal logic violations - B
Without MC Overheads B, Wegheit puters 1o foduy's culengig prohletia Seveal teck

prne’lmmh‘s niques are uwel o praclios; uihers are the focus of cur
) 3
Lapzoages Fditcd rent rescarch Tha izl in this paper s direcsed

" 1 ing thel w progrum (moils its Teguiraments even
Symbolic Execufion st e o e
1 technology in 1 e bazically o tezing tecnnnlegy.

and Program TeStmg 'l'h],:n:,.u::n:: n:;:ll’ ::.‘..‘u: af cip -J:il chatapeopram is

expecird 10 handlc is prsgented o the prozram. |7 the

James C. King, progrem % judgnl o peedace correst reanlis foe the

IBM Thomas J. Witson Rescarch Center wwinple, 1t zmmmed Lo bz corrace. Mucs airnen Wik
1] focusee an the yositena el huw chous: s
s1m;k.

Fezent wark un praviog the sceretnss of programs

by feemal enaisds 2] shws rreal Poses: 32C ppears

1o b tha 2 rimaie webaigque for preducs .‘a'Jt{r o

grama Howewr the praciieal scouniplishmerss in thiy

aree fafl thort of © tzel far sowhne w2 Domdamzatl

—— 1oy in redecr i the Uledny t2 proctize e ool

Th0t puger deserlbes the syimhulic cxeurion of pras ::-:;f:’!-:r:u'l-.:;tin o ik i

grams_ Tastend of supplying toe swciagl Inputs @0 2 " Propra festop aml fCIOAT provi) on bz o
progeam (e numbers) one supetics symhnls represeats < g b

ing arhlmary valpes. dhe execstion geocwed 25 io a o et el
murmal Byarytipn excepd that values mfiN.as'anllf g tre poanlls, Jhresenele

(2]
N
S
N
=
b
=
o]
&
r—
o]
&
B~
Q
-
=
=
é

Research Program Announcement

New research program on fuzzing stateful systems at NUS
(July 23 - 2027)

PI: Abhik Roychoudhury
Co-PI: Zhenkai Liang, Umang Mathur, Manuel Rigger.

@9
N
&
N
>
—_—
=)
=
,M"
—
o]
IS
—
o]
g
~
Q
+~
=
=
é)

TSS - Space of Problems

Fuzz Testing

Feed semi-random inputs to find hangs and crashes

Continuous fuzzing
Incrementally find new “problems” in software

Chronological Evolution of Capabilities

Future plan

Fuzz testing - NUS -

this proposal .
Point Projects MINDEF, MoE... L - (= Crash reproduction e ; :
: bolic Tai is” Tt Gyl S st 20232 Re-construct a reported crash, crashing input not included due to privacy
e.g. “Symbolic Taint Analysi 2
‘A DIRP TSUNAMi(2015 -19) Managed by NUS+NTU R hi Kk d
Securify(2015 - 20) (2019-23) €achning NookKs and corners

[2009-12, 2011-14, 2013-15]

Localizing reported observable errors
Patching reported errors from input-output examples

Other efforts from
NTU

(2023-26)

ALL of these problems benefit from solutions in fuzz testing.

Presentation to CSA review panel, Nov 202

Presentation to CSA review panel, Nov 2022

Structure of proposal [Impact

1. Reactive Systems fuzzing
Stateful behavior
Interaction

2. Concurrent System fuzzing « For entire = Rtk 3 For
fuzzing r hers an practitioners or
Class Ofconcurrency bugs community: fuzzer builders: fuzzer users:
Sample starting Use explainable There isa
SCh ed u le Space corpora from a benchmarking dichotomy
< & large pool of seeds techniques to between LibFuzzer
3' Data intensive SyStemS with varied account for the and the other
et : o characteristicsand effects of covariates fuzzers w.rt.
Often distributed in nature
origins, and broad during corpus and
1 target programs benchmarking program properties
4. Fuzzer evaluation and usage

Binary analysis support
Tool collaboration and working with industry

Presentation to CSA review panel, Nov 2022

NUS Internal Talk, July 2023

Applications welcome

https://nus-tss.github.io/fuzzing

- Post-doc
- PhD Student

- Research Assistant

™
N
S
N
=
i)
—
o]
B
r—
o]
=
&
&
-
=
=
é

https://nus-tss.github.io/fuzzing

Singapore Fuzzing
+~ Summer School 24

%

Annually to be held during the 4-year program.
First installment May 2024.

The inaugural Singapore Fuzzing Summer School will debut on the week of
27 — 31 May 2024 at the National University of Singapore in Singapore. The
school will focus on recent advances in fuzzing technology and the practical
application of fuzz testing tools. The school invites both postgraduate
students and researchers with a relevant interest in software testing. The
school also invites industry professionals who wish to gain practical hands-
on knowledge on fuzz testing tools and technologies

NUS Internal Talk, July 2023

O
O

https://nus.edu.sg/
https://www.visitsingapore.com/en/

